

MDO of Forward Swept Wings

KATnet II Workshop, 28-29 January 2008, Braunschweig

Martin Hepperle

DLR Institute of Aerodynamics and Flow Technology, Braunschweig

MDO of Forward Swept Wings

Warning: this presentation contains

70% Motivation for Design and Optimization

20% Monodisciplinary Design and Optimization

10% Multisciplinary Design and Optimization

Martin Hepperle

DLR Institute of Aerodynamics and Flow Technology, Braunschweig

Motivation

- Fuel price is likely to grow faster than other components of total operating costs.
 - Higher technology costs will become more acceptable with higher fuel prices.
 - ➤ Low drag and lightweight structures are design drivers.
- ➤ Effect of aviation on environment must be constrained.
 - \checkmark Soon: additional costs due to CO₂ emissions.
 - \checkmark Low drag aircraft burn less fuel, produce less CO₂, NO_x soot, ...

L/R DOC Sensitivity for Fuel Price Development

© AIRBUS DEUTSCHLAND GMBH. All rights reserved. Confidential and proprietary docurt

Drag Reduction Technologies

- Many technologies have been and are examined
 - Laminar flow,
 distributed roughness, bumps,
 dimples, plasma, synthetic jets, ...

- Laminar flow technology is the only <u>single</u> technology with the potential to reduce drag and hence fuel consumption <u>considerably</u>.
- Snowballing effects add to the effect of pure drag reduction and pay off in lower mass.
- ✓ NLF or HLF with simplified suction systems are feasible.
- Operational aspects (loss of laminarity) can be handled similar to ETOPS.
- ➤ The potential of laminar flow technology is big:
 - 15 20% overall aircraft drag reduction feasible

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Drag Reduction – Where ?

> Wing offers (besides fuselage) highest potential for friction drag reduction

Vortragstitel

Drag Reduction Potential for A340

10% net drag reduction is targeted for application of laminar flow technology

Example Standard Long Range Mission:

Frankfurt \rightarrow New York (~3340 NM; ~54 t fuel consumption)

Saving 10 % fuel $\approx 5.4 \text{ t}$!

Boundary Layer Transition Mechanisms

➤ Main drivers are

- → Reynolds number
- → velocity/pressure/Mach distribution → airfoil shape

Transition Mechanism	straight wing	swept wing
Tolmien Schlichting Instability	Х	Х
Crossflow Instability	-	Х
Attachment Line Transition	-	Х

Tapered Swept Wings

- → Transition on swept wings is affected strongly by leading edge sweep angle ($\phi_{0\%}$).
- **→** Chordwise position of transition depends on Re_T and pressure recovery.

$$\operatorname{Re}_{T} = \operatorname{Re} \cdot \frac{x_{T}}{c}$$

- ✓ For transonic aerodynamics the relevant sweep is not at the leading edge ($\phi_{0\%}$) or at the 25% chord line ($\phi_{25\%}$), but more close to the 50% chord line ($\phi_{50\%}$, typical location of shock).
- ✓ The taper ratio affects sweep angle of leading and trailing edges.

Geometry of Tapered Swept Wings

- → BSW
- \checkmark ϕ_{LE} is larger than $\phi_{50\%}$

Geometry of Tapered Swept Wings

- → BSW
- $\checkmark \phi_{\text{LE}}$ is larger than $\phi_{50\%}$

- → FSW
- $\checkmark \phi_{\text{LE}}$ is smaller than $\phi_{50\%}$

Laminar Flow Limits for Swept Wings

Natural Laminar Flow on Swept Wings

- Shaded areas show laminar flow.
- Light blue (bottom) when LE sweep is reduced to 11°.

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Bell 1945: X-1 (test configuration)

Grumman 1985: X-29 2000: Suchoi S-37

NASA

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: EC85-33297-23 Date: 1985 Photo by: NASA

Folie 18

Summary of Historic Forward Swept Wing Designs

- → First FSW designs during the 1940s.
- Some activity around 1945-1946 in USSR and USA. 7
- → FSW concept revitalized in the 1980s for military aircraft:
 - ➤ X-29 (1985), S-37 "Berkut" (2000) built, flight tested,
 - \checkmark improved C_{1 max}, maneuver performance.
- **7** FSW with Laminar Flow
 - \checkmark V-Jet (no business success),
 - \checkmark two seater sailplanes.

Flow Field of Swept Wings

- ➤ Comparison of wings having different sweep angles.
- \checkmark All wings have the same spanwise lift distribution (e.g. elliptical).
- ➤ All wings have the same induced drag.
- ✓ All wings have the same spanwise bending moment distribution.

Flow Field of Swept Wings

- All wings have the same mean downwash velocity.
- Sweep affects the spanwise downwash distribution.

Downwash Velocity at Wing

Flow Field of Swept Wings

- ✓ All wings have the same induced drag.
- Sweep affects the spanwise drag distribution.
- BSW has thrust at tips.
- FSW has thrust at root.

Aerodynamics of Tapered Swept Wings

Tapered FSW needs 7 less twist to achieve 1.4 reasonable lift coefficient distribution. 1.2 off-design effects: 7 local lift coefficient C_I BSW 30°, Twist 0° increased angle of attack BSW 30°, Twist -5° 7 FSW 30°, Twist 0° (takeoff/landing) 0.8 \rightarrow additional lift. → backward swept wing: 0.6 \rightarrow additional lift in outboard wing, 0.4 \rightarrow tip stall. \checkmark forward swept wing: 0.2 \rightarrow additional lift in center wing, 0 0.2 0.8 0 0.4 0.6 \rightarrow root stall. semi span 🏄

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Design of Forward Swept Wings

- Mono-Disciplinary Design & Optimization procedure applied at DLR in national project (LuFo/K2020):
 - ✓ Selection of planform (e.g. based on preliminary design).
 - ➤ Definition of a matching wing body configuration.
 - ✓ Selection of suitable basic airfoil sections.
 - ➤ Application of Navier-Stokes solver.
 - → Design loop:
 - → numerical black box optimization of twist distribution.
 - → inverse 3D wing design → adapted airfoil sections.
 - ✓ repeat cycle until satisfied.
- → No structural constraints applied \rightarrow approx. elliptical lift distribution.

Design and Integration of Forward Swept Wings

- ✓ Wing root in upwash field needs

 - → new belly fairing philosophy.
- → bad initial design:

Design and Integration of Forward Swept Wings

Future Multidisciplinary Approach

- ✓ Develop suitable objectives and constraints:
 - imes performance based → drag, mass (design, off-design),
 - imes stiffness based → divergency, aileron reversal, flutter,
 - imes geometry based → thickness distribution.
- ✓ Use high fidelity methods for accurate modeling:
 - - ✓ suction distribution (for HLF design).
 - - finite element models,
 - structural sizing,
 - elastic tayloring (metal, composite).
- ✓ Perform coupled optimization:

MDO chain for transonic Wing optimization

- - Gradient free approach (e.g. Simplex type)
- ✓ Surface Geometry Generator
 - Flight shape
 - Parametric CAD model (CATIA V5)
- ✓ Parametric Structure Geometry Generator
 - Realistic rib-spar design
 - Stringers modeled by stiffness equivalent layers
- ✓ Aerodynamic Analysis
 - CFD code in inviscid mode (TAU)
 - Viscous drag estimation (flat plate)
- Structural-Sizing
 - Multiple load cases (Fatigue 1.0g, maneuver 2.5g, Touch Down 1.2g)
 - ✓ FEM solver (ANSYS)
 - Optimizer/Sizing (ANSYS)

Multi Disciplinary Optimization Process

- → DLR Project TIVA <u>Technology</u> Integration for the <u>Virtual</u> <u>Aircraft</u>
- → Objectives:
 - assessment of technologies in the context of the complete aircraft,
- ✓ Desired features:
 - multi disciplinary, fidelity, site,

 - ✓ usage of existing legacy as well as new codes,
 - → allowing for freedom of concept selection,
- - ✓ Further development using commercial framework "ModelCenter".

Multi Disciplinary Optimization Process

- Typical process chain for an UAV.
- Each tool is wrapped and can reside locally or on a server.
- Tools are linked by variables/data streams.
- Tools are only executed when needed.

in der Helmholtz-Gemeinschaft

Multi Disciplinary Optimization Process

- Single aircraft description "CPACS" 7
- Simple example: wing geometry 7
- ➤ Automatic generation of:
 - Lists and reports (XSLT), 7
 - simple 2D-views, 7
 - simple CAD model Rhinoceros, 7
 - parametric CAD model CATIA V5, 7
 - aero method VSAERO, 7
 - ... up to Hi-Fi methods. 7

Pror Homes

CATIA V5

DODO INTI

Rhinoceros

in der Helmholtz-Gemeinschaft

DLR

Card and the Card and the

Multi Disciplinary Optimization Process

- Much effort was spent in defining a common aircraft description (this is an ongoing process)
- ✓ Such a description is of course limited, cannot be completely general.
- → Basic modules are currently being adapted:
 - → Aerodynamics (\rightarrow performance),
 - → Engines (\rightarrow performance, emissions),
 - → Structures (\rightarrow stiffness, \rightarrow mass),
 - \checkmark Flight simulation (\rightarrow stability & control, handling qualities),
 - → Noise (\rightarrow shielding, trajectory),
 - → Environmental impact (\rightarrow CO₂, NO_x, contrails),
 - ➤ Mission simulation.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CARD AND SOL HE AND MEDATION

Finally – Optimization Wish List

- ✓ More intelligence
- ✓ More efficiency
 - → parallelized optimizers:
 - - concurrent evaluation of gradients,
- Follow hardware development

 - → make better use of multi-core processors (2-8 threads in parallel).
- ✓ Note: Some of these items are available in software like ModelCenter/CenterLink.

