
1

Quick Reference for vi
This quick reference lists commands you can use in the vi editor on
Hewlett-Packard's UNIX™ System, HP-UX.

Notations

 Commands beginning with : (colon) must end with [Return]
These commands represent escape commands to the ex editor.
You can reference the ex tutorial for more details.

 file is the name of file
 cursor_cmd is a cursor movement command

(e.g., G j w b)
 char is a single character
 str is a character string (can contain pattern matching

characters)
 - means you press , hold it down, and press the

 key.
 n,m can be two line numbers (e.g., 4,50), a line marker (e.g.

.,$), or a search expression (e.g., /string1/,/string2/).
 (a-z) means you choose a letter from a through z

Modes

Command Mode When you are not inserting or changing text, you
can move the cursor and run commands (e.g.,
searching, deleting, saving). Pay attention to the
case of the commands; check the [Caps] lock key
if vi behaves strangely.

Insert Mode When you insert or change more than one
character of text, you cannot use command mode
commands. To leave the insert mode, press .

UNIX™ is a trademark of AT&T Bell Laboratories.

Copyright 1987, Hewlett-Packard Company.

Copyright 1980, 1984, AT&T, Inc.

2

Start a vi Session

vi file Edit file

vi –r file Edit last saved version of file after system

or editor crash

vi + n file Edit file and place cursor at line n

vi + file Edit file and place cursor on last line

vi file1 … filen Edit file1 through filen; After saving

changes in file1, enter :n for next file, :p

for previous file

vi +/str file Edit file and place cursor at line containing

str

Save Text and Exit vi

ZZ or :wq or :x Save file and exit vi

:w file Save file but do not exit; omitting file saves current

file

:w! file Save file overriding normal checking

:n,mw file Write lines n through m to file

:n,mw>>file Append lines n through m to end of file

:q Leave vi, saving changes before last write (you may be

prompted to save first)

:q! Leave vi without saving any changes since last write

Q Escape vi into ex editor with same file; : vi returns

:e! Re-edit current file, disregarding changes since last

write

:e file Edit new file

Status Commands

:.= Print current line number

:= Print number of lines in file

- Show file name, current line number, total lines in file,

and percent of file location

:l (letter “l”) Display tab (^l) backslash (\) backspace (^H) newline

($) bell (^G) formfeed (^L) of current line in status line

3

Inserting Text

To leave the insert mode, press .
a Append after cursor

A Append after end of current line

I Insert before cursor

I Insert before beginning of current line

o Open new line below current line and insert

O Open new line above current line and insert

- char While inserting, ignore special meaning of char

(e.g., for inserting characters like  and control

characters)

:r file Read file, and insert after current line

:r !program Insert output of program after current line

:nr file Read file, and insert after line n

Undoing and Repeating Commands

u Undo last command

U Restore current line to original state

"np Retrieve last nth delete (last 9 deletes are in buffer)

"1pu.u. Scroll through the delete buffer until you retrieve desired

delete (repeat u.)

n Repeat last / or ? search command

N Repeat, in reverse direction, last / or ? search command

; (semi-colon) Repeat last f F t or T search command

, (comma) Repeat, in reverse direction, last f F t or T search

command

. (period) Repeat last text change command

Open
newline
above

Insert at
beginning

Open
newline
below

O

I

o

Append at
end

A

Insert before
cursor

i

Append
after
cursor

a

Cursor

Inserting text commands

4

Moving the Cursor

k or - Up

j or - Down

h or - Left

l or  Right

w or W Start of next word; W ignores punctuation

b or B Start of previous word; B ignores punctuation

e or E End of next word; E ignores punctuation

0 (zero) or | First column in current line

n| Column n in current line

^ (caret) First non-blank character in current line

$ Last character in current line

+ or  First character in next line

- First non-blank character in previous line

1G First line in file

G Last line in file

G$ Last character in file

nG Line n in file

(Back to beginning of sentence

) Forward to beginning of next sentence

{ Back to beginning of paragraph

} Forward to beginning of next paragraph

Section Positioning

Mark sections by placing { in first column.
[[Back to beginning of section

]] Forward to beginning of next section

Inserting text commands
1G

Cursor

Try these cursor commands ,
in a
file.

k

{
e EB

0
1|
(

^

�������	

+
)

G
G$

j

b
h

l w $
W
w

5

Deleting Text

- or



While inserting, delete previous character

- While inserting, delete previous word

- While inserting, delete to start of inserted text

nx Delete n characters beginning with current; omitting n

deletes current character

nX Delete previous n characters; omitting n deletes

previous character

xp Switch character at cursor with following character

ndw Delete next n words beginning with current; omitting n

deletes current word

ndb Delete previous n words; omitting n deletes previous

word

ndd Delete n lines beginning with current; omitting n deletes

current line

:n,md Delete lines n through m

D or d$ Delete from cursor to end of current line

dcursor_cmd Delete text to cursor_cmd (e.g., dG deletes from

current line to end of file)

Placing Marks in the Text

m(a-z) Mark current position with a letter a through z

(e.g ., ma)

’(a-z) Move cursor to position (a-z) (e.g., ’a)

‘‘ or ’’

(single quotes or

grave accents)

Move cursor to location before last / ? or G

X Delete
character
before cursor

Cursor

Deleting text in a file.

x Delete
character
at cursor

db Delete word
before cursor

D
d$

Delete to
end of line

dw Delete word

dd Delete
line

6

Pattern Matching

Pattern matching characters help find strings with similar
characteristics.
:set magic Allow pattern matching with special characters

(default)

:set nomagic Allow only ^ and $ as special characters

^ (caret) Match beginning of line

$ Match end of line

. (period) Match any single character

\< Match beginning of word

\> Match end of word

[str] Match any single character in str

[~str] Match any character not in str

[a-n] Match any character between a and n

* Match zero or more occurrences of previous character

in expression

\ Escape meaning of next character (e.g., \$ lets you

search for $)

\\ Escape the \ character

Indenting Text

- or  While inserting, insert one shift width

:set ai Turn on auto-indentation

:set sw=n Set shift width to n characters

n<< or n>> Shift n lines left or right (respectively) by one shift

width; omitting n shifts one line

< or > Use with cursor command to shift multiple lines left or

right

HEWLETT PACKARD
HP Part Number

98597-90000
Microfiche No. 98597-99000

Printed in U.S.A. 9/87
98597-90630

For Internal Use Only

7

Searching

% Search to beginning of balancing () [] or {}

fchar Search forward in current line to char

Fchar Search backward in current line to char

tchar Search forward in current line to character before char

Tchar Search backward in current line to character after char

/str  Find str

?str  Search in reverse for str

:set ic Ignore case when searching

:set noic Pay attention to case when searching (default)

Global Search and Replace

:n.ma/str1/str2/opt Search from n to m for str1. Replace

str1 with str2, using opt. opt
can be g for global change, c to confirm

change (press ( to acknowledge,

 to suppress), and p to print

changed lines.

& Repeat last :a command

:g/str/cmd Run cmd on all lines that contain str

:g/str1/s/str2/str3/ Find line containing str1, replace str2

with str3

:v/str/cmd Execute cmd on all lines that do not

match str

Copying and Placing Text

nyy or nY Yank n lines (place in buffer); omitting n yanks current

line

ycursor_cmd Yank from cursor to cursor_cmd (e.g., yG yanks

current line to last line in file)

"(a-z)nyy or

"(a-z)ndd

Copy or delete n lines into named buffer a through z;

omit n for current line

p (lower-case) Put yanked text after cursor (print buffer); also prints last

deleted text

P (upper case) Put yanked text before cursor; also prints last deleted text

"(a-z)p or

"(a-z)P

Put lines from named buffer a through z after or before

current line

8

Changing Text

Preceding these commands with n (a number) repeats the command n
times.
rchar Replace current character with char

Rtext  Replace current character(s) with text

stext  Substitute text for current character

S or cc text  Substitute text for entire line

cwtext  Change current word to text

Ctext  Change rest of current line to text

ccursor_cmd text  Change to text from current position

to cursor_cmd

Joining Lines

J Join next line to end of current line

nJ Join next n lines

Cursor Placement and
Adjusting the Screen

H Move cursor to top line of screen

nH Move cursor to line n from top of screen

M Move cursor to middle of screen

L Move cursor to bottom line of screen

nL Move cursor to line n from bottom of screen

- Move screen up one line

- Move screen down one line

- Move screen up ½ page

- Move screen down ½ page

- Move screen up one page

- Move screen down one page

- or letter “l” Redraw screen

z  Make current line top line on screen

nz  Make line n top line on screen

z. Make current line middle line

nz. Make line n middle line on screen

z- Make current line bottom line

nz- Make line n bottom line on screen

9

Shell Escape Commands

:! cmd Execute shell command cmd; you can add these special

characters to indicate:

% name of the current file

name of last tile edited

:!! Execute last shell command

:r! cmd Read and insert output from cmd

:f file Rename current file to file

:w !cmd Send currently edited file to cmd as standard input and

execute cmd

:cd dir Change the current working directory to dir ($HOME is

default)

:sh Start a sub-shell (- returns to editor)

:so file Read and execute commands in file (file is a shell

script)

Shell Filters

!cursor_cmd
cmd

Send text from current position to cursor_cmd

to shell command cmd. Replace original text in file

with output from cmd

!}sort  Example: Sort from current position to end of

paragraph and replace text with sorted text

Macros and Abbreviations

:map key cmd_seq Define key to run cmd_seq when pressed

:map Display all created macros on status line

:unmap key Remove macro definition for key

:ab str string When str is inserted, replace with string

:ab Display all abbreviations

:una str Unabbreviate str

Map allows you to define strings of vi commands. Place in .exrc to
run each time you enter vi. For long macros, set the notimeout
option. If you embed control characters (e.g., keys like  in the
macro, you need to precede them with -.
If you need to include quotes ("), precede them with \ (backslash).
Unused keys in vi are: K V g q v * = and the function keys.
Example:
:map v /I - dwiYou -
When v is pressed, search for “I” (/I ), delete word (dw) and
insert “You” (iYou ). - allows to be inserted.

10

Setting Options

Options shown here are default. To change them, either set them (:set
option) or unset them (:set nooption). To run options each time
you enter vi, place in .exrc file in home directory and omit preceding
colons (:).

:set all Print all options

:set nooption Turn off option

:set noai Set automatic indentation

:set ap Print line after d c J m :s t u command

:set bf Discard control characters from input

:set eb Precede error messages with bell

:set noic Ignore case when searching

:set dir=tmp Set directory of buffer file

:set lisp Modify brackets for Lisp compatibility

:set magic Pattern match with special characters

:set mesg Allow other users to send messages

:set nolist Show tabs (^l) and end of line($)

:set nonu Prefix lines with line number

:set opt Speed output: eliminate automatic 

:set prompt Prompt for command mode input with :

:set nore Simulate smart terminal on dumb terminal

:set remap Allow macros within macros

:set report Indicate largest size of changes reported on

status line

:set ro Change file to read only

:set scroll=n Set n lines for - and z

:set sh=shell_path Set shell escape (default is /bin/sh)

:set showmode Indicate input or replace mode

:set sw=8 Set the shift width to 8 characters

:set term Print terminal type

:set terse Shorten error messages with terse

:set notimeout Eliminate one second time limit for macros

:set tl=0 Set significance of tags beyond this many

characters (0 means all)

:set te=8 Set tab stops for text input to 8 characters

:set nowa Inhibit normal checks before write

commands

11

:set warn Warn “No write since last change”

:set window=n Set number of lines in a text window to n

:set wm=n Set automatic word wrap around n spaces

from right margin (e.g., :set wm=8)

Ranges

:n,m lines n to m

:. current line

:$ last line

:’c marker c

:% all lines

:g/pattern/ all matching lines

Examples:
:7,12d deletes lines lines 7 to 12
:.,$s/pattern/string/g replace pattern matches with string
from current line (.) to end of file ($).

